Physical Metallurgy: Principles and Design / Gregory N. Haidemenopoulos

BUY

BRIEF CONTENTS

Chapter 1 Introduction

  • What is physical metallurgy
  • The aim of the book
  • Who should read this book
  • Book structure
  • How to read the book

Chapter 2 Structure of metals

  • Introduction
  • Crystalline vs. amorphous materials
  • The crystal lattice
  • The crystal structure of metals
  • Allotropy
  • Crystal structure effects
  • Solid solutions
    • Interstitial solid solutions
    • Substitutional solid solutions
  • Intermetallic compounds and intermediate phases
  • A first look at the microstructure of alloys
  • Thermodynamics and kinetics of structure
    • Thermodynamic equilibrium
    • Internal energy
    • Enthalpy
    • Entropy
    • Gibbs free energy and thermodynamic equilibrium
    • Kinetics of structure
  • Synopsis
  • Review questions

Chapter 3 Structural imperfections

  • Introduction
  • Point defects
    • Vacancies and interstitials
    • Vacancies and diffusion
  • Linear imperfections – Dislocations
    • The plastic deformation of crystals
    • The strength of perfect crystals
    • Dislocations and plastic deformation in metal crystals
    • Geometrical characteristics of dislocations
    • Mixed dislocations and dislocation loops
    • Energy and density of dislocations
    • Perfect and partial dislocations, stacking faults
    • Dislocation movements: glide, cross–slip, and climb
    • Jogs and kinks, dislocation reactions
    • Plastic deformation due to dislocation glide
    • Energy and stress fields of dislocations
    • Forces on dislocations
    • Observation of dislocations
    • Dislocation effects
  • Interfaces
    • Introduction – Interfacial energy
    • Free surfaces
    • Grain boundaries
    • Interphase boundaries
    • Interface effects
  • Synopsis
  • Review questions

Chapter 4 Alloy thermodynamics and phase diagrams

  • Introduction
  • Free energy of one-component systems (pure metals)
  • Free energy of solid solutions
  • Chemical potential and thermodynamic equilibrium
  • The Gibbs phase rule
  • Equilibrium phase diagrams in binary systems
    • Binary system with complete solid solubility
    • Binary system with a miscibility gap
    • Binary system with eutectic point
    • Binary system with peritectic point
  • Examples of phase diagrams
    • The binary system CuZn
    • The binary system Fe-C
  • Case study: Solder alloys – The Pb-Sn phase diagram
  • Synopsis
  • Review questions

Chapter 5 Diffusion

  • Introduction
  • Diffusion mechanisms
  • Fick’s first law of diffusion – The diffusion coefficient
  • Random walk and diffusion
  • Fick’s second law of diffusion
  • Temperature dependence of diffusion
  • Thermodynamics and diffusion
    • Driving force for diffusion
    • Concentration dependence of the diffusion coefficient –
      The thermodynamic factor
  • Substitutional diffusion
    • Self-diffusion in pure metals
    • Self-diffusion in a homogeneous solid solution
    • Substitutional diffusion in a solid solution with concentration gradients – Interdiffusion
    • Review of diffusion coefficients
  • Irreversible thermodynamics and diffusion
    • Diffusion in multicomponent systems
    • Diffusion by non-chemical forces: Curvature and stress
  • Effects of diffusion
  • Analytical solutions to the diffusion equation
    • Types of diffusion problems
    • Short diffusion times or semi-infinite media
    • Long diffusion times or finite media
    • Application of the Laplace transform in diffusion problems
    • Moving boundary problems
  • Numerical methods – Computational kinetics
  • Synopsis
  • Review questions

Chapter 6 Phase transformations

  • Introduction
  • Nucleation and growth transformations (NGT)
  • Nucleation
    • The chemical driving force for nucleation
    • Homogeneous nucleation
    • Heterogeneous nucleation
    • Nucleation strain energy and the morphology of the new phase
  • Growth
    • Growth processes
    • Interface-controlled growth
    • Diffusion-controlled growth
  • Overall rate of concurrent nucleation and growth
  • Coarsening
  • Continuous transformations
    • Sharp and diffuse interfaces
    • Spinodal decomposition
    • Order-disorder transformations
  • Martensitic transformations
    • Basic characteristics of martensitic reactions
    • The shape deformation
    • Habit planes and orientation relationships
    • Morphology of martensite
    • Martensitic interfaces
    • Nucleation of martensite
    • Mechanical effects
  • Effects of phase transformations
  • Synopsis
  • Review questions

Chapter 7 Plastic deformation and annealing

  • Introduction
  • Mechanisms of plastic deformation
  • Deformation of single crystals by slip
  • Deformation in polycrystals
  • Strain hardening
    • Dislocation multiplication
    • Mechanisms of strain hardening
    • Strain hardening in polycrystals
  • Mechanical twinning
  • Annealing
    • Annealing processes
    • Stored energy
    • Property changes during annealing
    • Recovery
    • Recrystallization
    • Grain growth
    • Grain boundary pinning and grain refinement
  • Texture in polycrystalline metals
    • Development of anisotropy
    • Deformation texture
    • Recrystallization texture
    • Texture effects
  • Synopsis
  • Review questions

Chapter 8 Strengthening mechanisms

  • Introduction
  • Slip as a thermally activated process
  • Overview of strengthening mechanisms
  • Lattice resistance
  • Solid solution strengthening
    • Substitutional solutes – Symmetric fields
    • Interstitial solutes – Non-symmetric fields
    • Cottrell atmospheres, yield point, and strainaging
  • Grain boundary strengthening
  • Precipitation strengthening
    • Aging
    • Precipitation strengthening mechanisms
  • Implications of strengthening mechanisms
  • Synopsis
  • Review questions

Chapter 9 Fracture, fatigue, and creep of metals

  • Introduction – Mechanical behavior of metals
  • Fracture
    • Introduction – The problem of brittle fracture
    • Ductile and brittle fracture
    • Elements of fracture mechanics
  • Fatigue
    • Introduction
    • Cyclic behavior
    • Fatigue without pre-existing cracks – Strain-lifeapproach
    • Fatigue with pre-existing cracks – Damagetolerance
  • Creep
    • Introduction
    • Dislocation creep
    • Diffusional flow
    • Creep fracture and creep life
    • Design of creep resistant alloys
  • Synopsis
  • Review questions

Chapter 10 Physical metallurgy of steels

  • Introduction
  • Phases in steels
    • Solid solutions – Ferrite, austenite, and martensite
    • Carbides and nitrides
    • Phase mixtures – Pearlite and Bainite
  • The Fe-C phase diagram
  • Alloying elements in steels
  • Phase transformations in steels
    • Isothermal and continuous cooling transformations
    • The transformation of austenite to ferrite (γ → α)
    • The transformation of austenite to pearlite (γ → P)
    • Transformation of austenite to martensite(γ → M)
    • Transformation of austenite to bainite (γ → B)
    • Isothermal transformation diagrams
    • Continuous cooling transformation diagrams
  • Hardenability
  • Tempering of martensite
  • Heat treatment of steel
  • Case studies in steels
  • Synopsis
  • Review questions

Chapter 11 Alloy design

  • Introduction
  • The Alloyneering methodology for alloy design
  • Simulation framework
    • Computational alloy thermodynamics
    • Computational kinetics
    • Phase-field modeling
  • Simulation examples
    • Intercritical annealing of a medium-Mn steel
    • Simulation of homogenization in Al-Mg-Si alloys
  • Alloy design: Medium Mn steels
  • Process design: Multi-pass hot rolling of steels
  • Synopsis